The 10 Gartner Trends for 2018

25. Januar 2018 11:38 Uhr  |  Dr. Ulrich Kampffmeyer  |  Permalink


Gartner hat in seinen Top 10 Strategic Technology Trends for 2018 eine Dreiteilung in “Intelligent”, “Digital” und “Mesh” gewählt. Darunter fallen die 10 Trendthemen der nächsten Jahre: Artificial Intelligence, Apps & Analytics, Intelligent Things, Digital Twins, Cloud, Conversational Platforms, Augmented Reality, Blockchain, Adaptives Risk Management und Verwandtes.

Kurzfassung in Deutsch

1. Grundlagen der Künstlichen Intelligenz: Unternehmen sammeln derzeit gezielt Informationen und Erfahrung, um ihre Expertise im Bereich Künstliche Intelligenz auszubauen und wettbewerbsfähig zu bleiben. Diejenigen, welche schnelllernende Systeme und entsprechende Algorithmen entwickeln, werden sich durchsetzen.

2. Intelligente Apps und Analytics: Viele Apps werden in Zukunft Künstliche Intelligenz beinhalten, auch wenn diese vom Nutzer teilweise unbemerkt im Hintergrund arbeitet. Sie können eine Schnittstelle zwischen Mensch und intelligenten Maschinen darstellen.

3. Intelligente Dinge: Grundsätzlich sind hiermit alle Gegenstände gemeint, die Dank KI mit ihrer Umwelt, also dem Menschen und anderen vernetzten Objekten kommunizieren können. Das ist unter anderem für Drohnen und Autos interessant, die Schwarmintelligenz nutzen, um das Fahren bzw. Fortbewegen sicherer zu machen.

4. Digitale Zwillinge: Hiermit sind virtuelle Abbilder realer Objekte gemeint, die beispielsweise in der Produktion Aufschluss und Informationen über das Objekt geben, bevor es in der realen Welt getestet wird. Unter anderem bei Bauvorhaben und im Gesundheitsbereich ist dieser Trend zukunftsträchtig.

5. Cloud to Edge: Edge Computing bietet gegenüber Cloud Computing vor allem den Vorteil, dass Informationen quellennah verarbeitet werden. Dennoch schließen sich beide nicht aus, sondern sollten kombiniert werden.

6. Konversationelle Plattformen: Auditive Geräte wie Amazons Alexa aber auch textverarbeitende Programme werden die Kommunikation von Mensch und Maschine deutlich verändern. Die Herausforderung hier liegt vor allem darin, das Verständnisvermögen der Geräte zu verbessern. 

7. Immersive Erlebnisse: Künstliche Realitäten, die durch Gadgets wie Virtual-Reality-Brillen erzeugt werden, werden in Zukunft in Kombination mit anderen Trends ganz neue Erlebnisse erschaffen. Der Mensch bleibt dabei physisch in seiner Welt, kann aber schier unbegrenzte verschiedene Welten erleben.

8. Blockchain: Diese Technologien können für unterschiedliche Bereiche genutzt werden, unter anderem im Gesundheits- und Finanzwesen oder für Regierungsbelange. Allerdings müssen Blockchains für die Zukunft noch viel weiter ausgebaut werden.

9. Event-Fokussierung: Mit Business-Events sind in diesem Fall alle technischen Aktionen gemeint, die mit einem Unternehmen in Verbindung stehen und von ihm erfasst werden müssen. Dazu zählen zum Beispiel Kaufabschlüsse. Mit den neuen Technologien können diese besser und schneller erfasst werden, woraus sich Erkenntnisse ableiten lassen.

10. Kontinuierliche Risikoevaluation: Alle neuen technischen und digitalen Entwicklungen bringen ein höheres Potenzial an Risiken mit sich. Diese in Echtzeit zu erheben und einzuschätzen ist unerlässlich, um Sicherheitsmaßnahmen anzupassen. 

Gartner IT Trends 2018

 

Ausführlich in Englisch

Intelligent

Trend No. 1: AI Foundation
The ability to use AI to enhance decision making, reinvent business models and ecosystems, and remake the customer experience will drive the payoff for digital initiatives through 2025.
Given the steady increase in inquiry calls, it’s clear that interest is growing. A recent Gartner survey showed that 59% of organizations are still gathering information to build their AI strategies, while the remainder have already made progress in piloting or adopting AI solutions.
Although using AI correctly will result in a big digital business payoff, the promise (and pitfalls) of general AI where systems magically perform any intellectual task that a human can do and dynamically learn much as humans do is speculative at best. Narrow AI, consisting of highly scoped machine-learning solutions that target a specific task (such as understanding language or driving a vehicle in a controlled environment) with algorithms chosen that are optimized for that task, is where the action is today. “Enterprises should focus on business results enabled by applications that exploit narrow AI technologies and leave general AI to the researchers and science fiction writers,” says Cearley.

Trend No. 2: Intelligent Apps and Analytics
Over the next few years every app, application and service will incorporate AI at some level. AI will run unobtrusively in the background of many familiar application categories while giving rise to entirely new ones. AI has become the next major battleground in a wide range of software and service markets, including aspects of ERP. “Challenge your packaged software and service providers to outline how they’ll be using AI to add business value in new versions in the form of advanced analytics, intelligent processes and advanced user experiences,” notes Cearley.
Intelligent apps also create a new intelligent intermediary layer between people and systems and have the potential to transform the nature of work and the structure of the workplace, as seen in virtual customer assistants and enterprise advisors and assistants.  
“Explore intelligent apps as a way of augmenting human activity, and not simply as a way of replacing people,” says Cearley. Augmented analytics is a particularly strategic growing area that uses machine learning for automating data preparation, insight discovery and insight sharing for a broad range of business users, operational workers and citizen data scientists.

Trend No. 3: Intelligent Things
Intelligent things use AI and machine learning to interact in a more intelligent way with people and surroundings. Some intelligent things wouldn’t exist without AI, but others are existing things (i.e., a camera) that AI makes intelligent (i.e., a smart camera.) These things operate semiautonomously or autonomously in an unsupervised environment for a set amount of time to complete a particular task. Examples include a self-directing vacuum or autonomous farming vehicle. As the technology develops, AI and machine learning will increasingly appear in a variety of objects ranging from smart healthcare equipment to autonomous harvesting robots for farms.
As intelligent things proliferate, expect a shift from stand-alone intelligent things to a swarm of collaborative intelligent things. In this model, multiple devices will work together, either independently or with human input. The leading edge of this area is being used by the military, which is studying the use of drone swarms to attack or defend military targets. It’s evident in the consumer world in the opening example showcased at CES, the consumer electronics event.

Digital

Trend No. 4: Digital Twins
A digital twin is a digital representation of a real-world entity or system. In the context of IoT, digital twins are linked to real-world objects and offer information on the state of the counterparts, respond to changes, improve operations and add value. With an estimated 21 billion connected sensors and endpoints by 2020, digital twins will exist for billions of things in the near future. Potentially billions of dollars of savings in maintenance repair and operation (MRO) and optimized IoT asset performance are on the table, says Cearley.
In the short term, digital twins offer help with asset management, but will eventually offer value in operational efficiency and insights into how products are used and how they can be improved.
Outside of the IoT, there is a growing potential to link digital twins to entities that are not simply “things.” “Over time, digital representations of virtually every aspect of our world will be connected dynamically with their real-world counterparts and with one another and infused with AI-based capabilities to enable advanced simulation, operation and analysis,” says Cearley. “City planners, digital marketers, healthcare professionals and industrial planners will all benefit from this long-term shift to the integrated digital twin world.” For example, future models of humans could offer biometric and medical data, and digital twins for entire cities will allow for advanced simulations.

Trend No. 5: Cloud to the Edge
Edge computing describes a computing topology in which information processing and content collection and delivery are placed closer to the sources of this information. Connectivity and latency challenges, bandwidth constraints and greater functionality embedded at the edge favors distributed models. Enterprises should begin using edge design patterns in their infrastructure architectures — particularly for those with significant IoT elements. A good starting point could be using colocation and edge-specific networking capabilities.
While it’s common to assume that cloud and edge computing are competing approaches, it’s a fundamental misunderstanding of the concepts. Edge computing speaks to a computing topology that places content, computing and processing closer to the user/things or “edge” of the networking. Cloud is a system where technology services are delivered using internet technologies, but it does not dictate centralized or decentralized service delivering services. When implemented together, cloud is used to create the service-oriented model and edge computing offers a delivery style that allows for executions of disconnected aspects of cloud service.

Trend No. 6: Conversational Platforms
Conversational platforms will drive a paradigm shift in which the burden of translating intent shifts from user to computer. These systems are capable of simple answers (How’s the weather?) or more complicated interactions (book a reservation at the Italian restaurant on Parker Ave.) These platforms will continue to evolve to even more complex actions, such as collecting oral testimony from crime witnesses and acting on that information by creating a sketch of the suspect’s face based on the testimony. The challenge that conversational platforms face is that users must communicate in a very structured way, and this is often a frustrating experience. A primary differentiator among conversational platforms will be the robustness of their conversational models and the API and event models used to access, invoke and orchestrate third-party services to deliver complex outcomes.

Trend No. 7: Immersive Experience
Augmented reality (AR), virtual reality (VR) and mixed reality are changing the way that people perceive and interact with the digital world. Combined with conversational platforms, a fundamental shift in the user experience to an invisible and immersive experience will emerge. Application vendors, system software vendors and development platform vendors will all compete to deliver this model.
Over the next five years the focus will be on mixed reality, which is emerging as the immersive experience of choice, where the user interacts with digital and real-world objects while maintaining a presence in the physical world. Mixed reality exists along a spectrum and includes head-mounted displays (HMD) for AR or VR, as well as smartphone- and tablet-based AR. Given the ubiquity of mobile devices, Apple’s release of ARkit and iPhone X, Google’s Tango and ARCore, and the availability of cross-platform AR software development kits such as Wikitude, we expect the battles for smartphone-based AR and MR to heat up in 2018.

Mesh

Trend No. 8: Blockchain
Blockchain is a shared, distributed, decentralized and tokenized ledger that removes business friction by being independent of individual applications or participants. It allows untrusted parties to exchange commercial transactions. The technology holds the promise to change industries, and although the conversation often surrounds financial opportunities, blockchain has many potential applications in government, healthcare, content distribution, supply chain and more. However, many blockchain technologies are immature and unproven, and are largely unregulated.
A practical approach to blockchain demands a clear understanding of the business opportunity, the capabilities and limitations of blockchain, a trust architecture and the necessary implementation skills. Before embarking on a distributed-ledger project, ensure your team has the cryptographic skills to understand what is and isn’t possible. Identify the integration points with existing infrastructures, and monitor the platform evolution and maturation. Use extreme caution when interacting with vendors, and ensure you are clearly identifying how the term “blockchain” is being used.

Trend No. 9: Event-Driven
Digital businesses rely on the ability to sense and be ready to exploit new digital business moments. Business events reflect the discovery of notable states or state changes, such as completion of a purchase order. Some business events or combinations of events constitute business moments — a detected situation that calls for some specific business action. The most consequential business moments are those that have implications for multiple parties, such as separate applications, lines of business or partners.  
With the advent of AI, the IoT, and other technologies, business events can be detected more quickly and analyzed in greater detail. Enterprises should embrace “event thinking” as part of a digital business strategy. By 2020, event-sourced, real-time situational awareness will be a required characteristic for 80% of digital business solutions, and 80% of new business ecosystems will require support for event processing.

Trend No. 10: Continuous Adaptive Risk and Trust
Digital business creates a complex, evolving security environment. The use of increasingly sophisticated tools increases the threat potential. Continuous adaptive risk and trust assessment (CARTA) allows for real-time, risk and trust-based decision making with adaptive responses to security-enable digital business. Traditional security techniques using ownership and control rather than trust will not work in the digital world. Infrastructure and perimeter protection won’t ensure accurate detection and can’t protect against behind-the-perimeter insider attacks. This requires embracing people-centric security and empowering developers to take responsibility for security measures. Integrating security into your DevOps efforts to deliver a continuous “DevSecOps” process and exploring deception technologies (e.g., adaptive honeypots) to catch bad guys that have penetrated your network are two of the new techniques that should be explored to make CARTA a reality.

Dr. Ulrich Kampffmeyer

Dr. Ulrich Kampffmeyer

Curriculum auf Wikipedia https://de.wikipedia.org/wiki/Ulrich_Kampffmeyer

Neuen Kommentar verfassen

Ihre E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.

Ich stimme zu, dass die von mir eingegebenen Daten einschließlich der personenbezogenen Daten an PROJECT CONSULT übermittelt und dort zur Prüfung der Freischaltung meines Kommentars verwendet werden. Bei Veröffentlichung meines Kommentars wird mein Name, jedoch nicht meine E-Mail und meine Webseite, angezeigt. Die Anzeige des Namens ist notwendig, um eine individuelle persönliche Kommunikation zu meinem Beitrag zu ermöglichen. Anonyme oder mit falschen Angaben eingereichte Kommentare werden nicht veröffentlicht. Zu Nutzung, Speicherung und Löschung meiner Daten habe die Datenschutzerklärung zur Kenntnis genommen.

Ich versichere, alle gültigen Vorgaben des Urheberrechts beachtet zu haben. Dies betrifft besonders die Nicht-Verwendung von urheberrechtlich geschütztem Material und die Nicht-Verwendung von Inhalten und Links zu Inhalten, die dem Leistungsschutz unterliegen. Für den Inhalt meines Kommentars bin ich trotz Prüfung und Freischaltung durch PROJECT CONSLT ausschließlich selbst verantwortlich. Meine Rechte am Beitrag werden bei PROJECT CONSULT nur durch die CC Creative Commons Vorgaben gewahrt. Für die Verfolgung mißbräuchlicher Nutzung meiner Beiträge durch Dritte bin ich selbst verantwortlich.